Calculation Methods As of July 22, 2008 ``` • Arithmetic Averaging [9] • CEMS Arithmetic Averaging [$] • Average Wind Speed [3] • Average Horizontal Wind Direction [4] • Vector Wind Speed [1] • Vector Wind Direction [2] • Sigma Theta [S] • Sigma v [j] • Rain Tip Bucket [A] • Rain Optical [p] = (25 * (Vout exp 1.87)) - 0.15 Min N Seconds [x] = Minimum 'N' second average Peak N Seconds [y] = Maximum 'N' second Average • Product [7] = P1 * P2 • Product 2 [g] = P1 * CONSTANT • Product 3 [h] = P1 * P2 * CONSTANT • Product 4 [v] = P1 / (CONSTANT - P2) Product 5 [w] = P1 * CONSTANT * 9240 * (20.9 / (20.9 - P2)) • Product 6 [B] = (P1 * CONSTANT) + 3371 Product 7 [a] = (P1 * 0.001959) / (0.265 - (0.0126 * P2)) • Product 8 [b] = 14984 * SQRT(650 / (P1 + 460)) * (P2 / 5937000) • Product 9 [c] = CONSTANT * P1 / P2 • Product 10 [d] = P1 + CONSTANT • Product 11 [e] = SQRT(P1 / CONSTANT) • Product 12 [J] = (P1 * P2) / CONSTANT • Hourly Ave Product 2 [W] = P1 * CONSTANT Hourly Ave Product 12 [X] = (P1 * P2) / CONSTANT Daily Summation [D] = Daily Summation of Hourly Averages • Summation [K] = P1 + P2 • Hour Previous Daily Summation [Q] • N Hour Rolling Average [r] • N Hour Block Average [q] • Difference [6] = P1 - P2 • Hourly Ave Difference [V] = P1 - P2 ``` ``` • Hourly Ave Ratio [Y] = P1 / P2 Hourly Ave Percent O2 [Z] = P1 * ((21 - CONSTANT) / (21 - P2)) • Percent O2 [o] = P1 * ((21 - CONSTANT) / (21 - P2)) • Ratio [8] = P1 / P2 • Square Root [s] = Square Root of P1 • Hour Previous [E] • Min N Minutes [F] = The minimum 'N' Minute average • Peak N Minute Rolling [G] = The maximum 'N' Minute rolling average • Peak N Minute Block [M] = The maximum 'N' Minute block average • Floor [f] = The greater of P1 and CONSTANT • Ceiling [C] = The lesser of Pl and CONSTANT • Dual Range [L] • Hour Snapshot [R] • Dual Range 2 [T] = When P1 < CONSTANT then P1, else P2 Dual Range 3 [U] = When input bit # CONSTANT is 0 then P1, else P2 • Dual Range 4 [!] = When P1 < CONSTANT then P2, else P1 • Modbus Master [M] • N-Hour Operational Rolling [1] • PLC Input [P] • SQL Input [N] • 1 Hour Opacity [H] • 2 Minute Opacity [I] • Raw Opacity [O] = same as arithmetic average • Opacity 2 [z] = 100 * (1 - e^{-(DS \times Cd/1000 \times K)}) • Part 75 Block 30 Day [0] • Part 75 Rolling 30 Day [5] • Part 75 Block 15 Minute [i] • N Hour Rolling Projection [k] • N Minute Rolling [m] • 24 Hour Exceedance Projection [t] Wet To Dry [u] = P1 / (1 - (P2 / 100)) • Slope Correction [#] = C1 * P1 + C2 • Gas Velocity [+] = • Instant Stack Flow [%] = • Standard Stack Flow [&] = ```